
Confabulation Based Sentence Completion for Machine Reading* 
 

Qinru Qiu1, Qing Wu2, Daniel J. Burns2, Michael J. Moore2, Robinson E. Pino2, Morgan Bishop2, and           
Richard W. Linderman2  

1Dept. of Electrical & Computer Engineering 
State University of New York at Binghamton 

Binghamton, NY 13850, USA 

2Air Force Research Laboratory 
Information Directorate, RITC 

525 Brooks Road, Rome, NY 13441, USA 

 
Abstract — Sentence completion and prediction refers to the 
capability of filling missing words in any incomplete sentences. It 
is one of the keys to reading comprehension, thus making 
sentence completion an indispensible component of machine 
reading. Cogent confabulation is a bio-inspired computational 
model that mimics the human information processing. The 
building of confabulation knowledge base uses an unsupervised 
machine learning algorithm that extracts the relations between 
objects at the symbolic level. In this work, we propose 
performance improved training and recall algorithms that apply 
the cogent confabulation model to solve the sentence completion 
problem. Our training algorithm adopts a two-level hash table, 
which significantly improves the training speed, so that a large 
knowledge base can be built at relatively low computation cost. 
The proposed recall function fills missing words based on the 
sentence context. Experimental results show that our software 
can complete trained sentences with 100% accuracy. It also gives 
semantically correct answers to more than two thirds of the 
testing sentences that have not been trained before. 
 
Keywords – cogent confabulation, machine reading, sentence 
completion, unsupervised learning, hash table 

I. INTRODUCTION 

Sentence completion and prediction, which refers to the 
capability of filling missing words in an incomplete sentence, 
is one of the keys to reading comprehension. In this paper, we 
focus on modeling, training and recall techniques for 
automatic sentence completion using unsupervised machine 
learning. Automatic sentence completion can have many 
important applications. It can be used to predict and complete 
a sentence to reduce the user keystrokes. It can be used to 
improve the accuracy of Optical Character Recognition 
(OCR) by providing semantic information. With careful 
design, a sentence completion test can provide quantitative 
measurement of the quality of the knowledge base accrued 
during unsupervised machine reading. 

To complete a sentence, it requires not only the appropriate 
vocabulary, but also the ability to analyze the given sentence 
and identify the structural and semantic clues that determines 
the meaning and nature of the missing words. Therefore, a 
large vocabulary, the prior knowledge in semantic 
connections of words as well as a good language sense are 
important to accomplish this task. These must be obtained 
from extensive reading and training.  

 

Many of the previous works in sentence completion aim at 
providing a “tab-complete” editing assistance. In [1], an 
“interactive keyboard” is proposed that predicts the most 
likely keystrokes based on the past sequence. References 
[2]~[4] propose techniques to predict the next user command 
in a Unix system. The problem of natural language sentence 
completion is considered in some typing assistance tools for 
apraxic [5] and dyslexic [6]. They provide a list of possible 
word completions for users to choose from. The authors of [7] 
propose an interactive word-completion algorithm based on 
integrated semantic knowledge and n-gram probabilities. The 
authors of [8] propose an information retrieval approach for 
sentence completion. It is further improved in [9] by using an 
n-gram language model [12].  

In this work we focus on the general sentence completion 
problem. The input of our problem is a sentence fragment 
with missing words at random locations. We are interested in 
filling in the missing words so as to create a syntactically 
correct and semantically coherent sentence. The sequence 
analysis techniques in [1]~[4] are not applicable to our 
problem since there is no relative past information. The n-
gram language model analyzes the sentence and predicts 
words in a sequential order from left to right. It may not be 
effective to the general sentence completion problem where 
the missing words can locate in the middle or at the beginning 
of a sentence. 

In this paper, we adopt the cogent confabulation model [10] 
to solve the sentence completion problem. Cogent 
confabulation is a bio-inspired model that mimics the human 
information processing. It is an unsupervised machine 
learning algorithm that extracts posterior probabilities among 
objects at the symbol level. In this work, we apply cogent 
confabulation to extract the relations among words in a 
sentence. A knowledge base (KB) is obtained by reading an 
extensive body of literature. When given an incomplete 
sentence, the most appropriate words will be selected based 
on the knowledge base. The selection procedure is an analogy 
to the activation of the human neurological system. Each 
word (or phrase) is analogy to a set of neurons and the 
posterior probabilities among words/phrases are analogy to 
the weight of the synapses connecting the neurons. The 
neurons with the highest excitation will be activated and 
further excite other neurons. When this procedure converges, 
the neurons (i.e. words or phrases) with the highest excitation 
will be selected. * Received and approved for public release by AFRL on 11/03/2010, case

number 88ABW-2010-5869. 
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In the rest of the paper, we refer to the procedure of 
knowledge base construction as the training process and refer 
to the procedure of words selection and sentence completion 
as the recall process. The characteristics of the proposed 
sentence completion technique can be summarized as the 
follows: 

1. It is based on the cogent confabulation model, which 
captures the posterior probability among words and 
phrases in a sentence. Therefore, our technique completes 
the sentence in a way such that the likelihood of the 
observed part is maximized. In contrast, the n-gram model 
maximizes the likelihood of the missing words. Although 
there is no definite advantage of one approach over 
another, they sometimes give different results.  

2. Our knowledge base provides the relations between all 
words or word pairs in the sentence. This enables the 
software to fill in the missing words at the beginning of 
the sentence based on the information provided later. 

3. The recall function mimics the information processing in 
the human neurology system, where neurons are exciting 
and being excited at the same time. Therefore, when 
multiple entries are missing, the selections of these entries 
evolve simultaneously. 

4. Comparing to the original confabulation model proposed in 
[10], our model achieves better performance as we allow 
multiple symbols to be excited at the same time and hence 
has a larger search space. Our training function adopts a 2-
level hash table, which significantly improves the training 
speed, so that we can extract knowledge from a larger 
training corpus in relatively short time. This enables the 
system to perform extensive reading while still 
maintaining a high quality knowledge base. 

The rest of the paper is organized as the follows. The 
background of the cogent confabulation model is provided in 
Section II. The detailed discussion of our knowledge model 
and our training/recall algorithms are provided in Section III. 
Section IV presents the experimental results and Section V 
gives the conclusions and our vision on future works. 

II. BACKGROUND 

Cogent confabulation [10] is an emerging computation model 
that mimics the Hebbian learning, the information storage and 
inter-relation of symbolic concepts, and the recall operations 
of the brain. Based on the theory, the cognitive information 
process consists of two steps: learning and recall. During the 
learning step, the knowledge links are established and 
strengthened as symbols are co-activated. During recall, a 
neuron receives excitations from other activated neurons. A 
“winner-takes-all” strategy takes place within each lexicon. 
Only the neurons (in a lexicon) that represent the winning 
symbol will be activated and the winner neurons will activate 
other neurons through knowledge links. At the same time, 
those neurons that did not win in this procedure will be 
suppressed. 

Figure 1 shows an example of lexicons, symbols and 
knowledge links. The three columns in Figure 1 represent 
three lexicons for the concept of shape, object and color with 
each box representing a neuron. Different combinations of 
neurons represent different symbols. For example, as shown 
in Figure 1, the pink neurons in lexicon I represent the 
cylinder shape, the orange and yellow neurons in lexicon II 
represent a fire extinguisher and a cup, while the red neurons 
in lexicon III represent the red color. When a cylinder shaped 
object is perceived, the neurons that represent the concepts 
“fire extinguisher” and “cup” will be excited. However, if a 
cylinder shape and a red color are both perceived, the neurons 
associated with “fire extinguisher” receives more excitation 
and become activated while the neurons associated with the 
concept “cup” will be suppressed. At the same time, the 
neurons associated with “fire extinguisher” will further excite 
the neurons associated with its corresponding shape and color 
and eventually make those symbols stand out from other 
symbols in lexicon I and III. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A simple example of lexicons, symbols and 
knowledge links. 

A computational model for cogent confabulation is proposed 
in [10]. Based on this model, a lexicon is a collection of 
symbols. A knowledge link (KL) from lexicon A to B is a 
matrix with the row representing a source symbol in A and the 
column representing a target symbol in B. The (i, j)th entry of 
the matrix represents the strength of the synapse between the 
source symbol si and the target symbol tj. It is quantified as 
the conditional probability P(si | tj). The collection of all 
knowledge links is called a knowledge base (KB). The 
knowledge bases are obtained during the learning procedure. 
During recall, the excitation level of all symbols in each 
lexicon is evaluated. Let l denote a lexicon, Fl denote the set 
of lexicons that have knowledge links going into lexicon l, 
and Sl denote the set of symbols that belong to lexicon l. The 
excitation level of a symbol t in lexicon l can be calculated as: 

        ∑ ∑ ln
|

  , .  

The function I(s) is the excitation level of the source symbol 
s. Due to the “winner-takes-all” policy, the value of I(s) is 
either “1” or “0”. The parameter p0 is the smallest meaningful 
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value of P(si | tj). The parameter B is a positive global 
constant called the bandgap. The purpose of introducing B in 
the function is to ensure that a symbol receiving N active 
knowledge links will always have a higher excitation level 
than a symbol receiving (N-1) active knowledge links, 
regardless of the strength of the knowledge links.  

III. CONFABULATION BASED SENTENCE COMPLETION 

In this section, we will present the knowledge base (KB) 
model for the sentence completion software followed by the 
training and recall algorithms. 

A. Knowledge Base Model 

Similar to [10], in this work, we assume that the maximum 
length of a sentence is 20 words. Any sentence that is longer 
than 20 words will be truncated. We also assume that the 
empty space is a word. Any sentence that is shorter than 20 
words will be padded with empty spaces. 

A total of 39 lexicons are constructed for a sentence. They are 
divided into 2 groups. Lexicons 0 through 19 belong to the 
first group. Each group 1 lexicon associates to a single word 
in the sentence. The ith lexicon represents the ith word. 
Lexicons 20~38 belong to the second group. Each group 2 
lexicon associates to a pair of adjacent words. The lexicon 
labeled (20+i) represents the pair of words in the (i+1)th and 
(i+2)th location. Associated to each lexicon is a collection of 
symbols. A symbol is a word or a pair of words that appears 
in the corresponding location. We use SA to denote the set of 
symbols associated to lexicon A. 

A knowledge link (KL) from lexicon A to B is an  
matrix, where M and N are the cardinalities of symbol sets SA 
and SB. The (i, j)th entry of the knowledge link gives the 
conditional probability | , where , and  . 
Symbols i and j are referred as source symbol and target 
symbol. 

For our sentence completion system, between any two 
lexicons there is a knowledge link. If we consider the lexicons 
as vertices and knowledge links as directed edges between the 
vertices, then they form a complete graph. 

B.    Training Algorithm Using Hash Technique 

The training of the confabulation model is the procedure to 
construct the probability matrix between source symbols and 
target symbols. Figure 2 gives a simple algorithm for the 
construction of the knowledge base. First the program scans 
through the training corpus and count the number of co-
occurrences of symbols in different lexicons. Then for each 
symbol pair it calculates their posterior probability.  

Although computationally simple, the challenge of this 
training algorithm is its memory complexity. For example, 
the English version of the book “Round the Moon” has about 
47 10  words. Our analysis shows that it has 23 10  
distinguished symbols (i.e. words and word pairs). Figure 3 
shows how the symbols are distributed over different 
lexicons. As we mentioned earlier, each knowledge link is an 

 matrix, where M and N are the symbol size of the 
source and target lexicons. Without any compression, the 
trained knowledge base will have 2.3 10  entries which are 
equivalent to be 9.2 GBytes. 

 

 

 

 

 

 

 

 

 

 

Figure 2. A simple algorithm of knowledge base 
construction. 

 

 

 

 

 

 

Figure 3. Symbol distribution in different knowledge 
links. 

Fortunately, the knowledge links are sparse matrices. Only 
less than 0.1% of the matrix has non-zero values. Therefore, 
an option to reduce the memory cost is to store the knowledge 
using the list of list (LIL) or the Yale format, which have been 
widely used for sparse matrix storage. However, this leads to 
the second problem. As the size of the training corpus grows, 
the number of symbols of each lexicon can easily go up to 
hundreds of thousands. Even with the best search algorithm, 
the time to locate the entry in the compressed matrix grows 
logarithmically and soon the algorithm will become 
prohibitively slow. Furthermore, each symbol is a string of 
characters (i.e. word or word pair). Therefore, the search 
procedure consists of a sequence of string comparisons, 
which will further slow it down. 

In this work, we propose to store the knowledge base using a 
hash table and speed up the search using a 2-level hash 
technique. Figure 4 gives the architecture of a hash table. The 
hash function maps each identifying value (i.e. key) to a 
bucket in an array. Hash collisions occur when multiple keys 
map to the same entry. Each entry’s keys are maintained in a 
linked list. Each entry in the array and the collision list is 
associated with a number that gives the location of the key in 
the storage table. If the key is neither in the array list nor the 
collision list, then it is a new key and a new entry will be 
allocated for it. 

Reset the co-occurrence matrix  to 0, where 0 , 39 
//count the co-occurrence of symbols 
For each sentence in training corpus { 

For each lexicon A, 0 39 { 
    For each lexicon B, 0 39 { 
        If  , ++; 

        } 
} 

} 
//calculate the posterior probability (i.e. knowledge link) 
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Figure 4. Architecture of a hash table. 

Our training function maintains two levels of hash tables. At 
the upper level, there is one large hash table with 2  buckets. 
Its function is to encode each unique word or word pair to an 
identifying number, which is referred as source/target symbol. 
At the lower level, there are 38 39 1482 smaller hash 
tables. Each one of them has 2  buckets. The second level 
hash tables transform the pair of symbols in the source and 
target lexicon to a number that identifies the location of their 
corresponding knowledge link entry. Figure 5 gives an 
example of the 2-level hash function.  

 

 

 

 

 

Figure 5. Two-level hash function locates the knowledge 
link entry of the given input strings. 

The average size of our training file is 358 Kbyte. On 
average, each training file has 64 10  words and 35 10  
distinguished words and word pairs. Our experimental results 
show that the average collision number of the first level hash 
table is 0.02. This means that, to search the symbol value of a 
string, we need 1.02 read accesses in average. Compared to a 
binary search technique which requires 35 10 15 
read accesses, the hash table provides almost 15 times speed 
up. More experimental results on the performance of the hash 
based training function will be presented in Section IV. 

At the end of training, the knowledge base will be written to a 
file. The first part of the file is the symbol encoding of all the 
unique words and word pairs that have been encountered in 
the training corpus. The second part of the file gives the 
content of the knowledge links. Each knowledge link is a 
sorted LIL. Each element in the LIL specifies the source and 
target symbol of the corresponding entry in the knowledge 
link matrix as well as the strength of this link (i.e. the 
posterior probability between the source and target).  

C. Incremental learning 

To enable extensive reading, the training algorithm should be 
able to read and learn continuously. Each time after a new 
book or article is read, the knowledge learned must be added 

into the existing knowledge base, which is referred as main 
knowledge base, and we refer this as incremental learning. It 
is the procedure of merging two knowledge bases together.   

Figure 6 shows the work flow of incremental learning. It 
consists of 2 steps, reading and merging. The former is to 
generate a new KB from the given training file and the latter 
is to combine the new KB with the main KB. 

 

 

 

 

 

 

 

 

Figure 6. The incremental learning involves 2 steps: 
reading and merging. 

 

 

 

 

 

 

 

 

Figure 7. Flow of knowledge base merging. 

Figure 7 gives the algorithm of knowledge base merging. 
Because the new knowledge base and the main knowledge 
base are trained at different times, they encode the word and 
word pairs in different ways. Therefore, the first step to 
merge two knowledge bases is to unify their symbolic 
representation. After that, for each knowledge link, we load 
the main KB and new KB and store them as a list of list 
(LIL). The knowledge links from main KB and new KB are 
denoted as KL1 and KL2 respectively. Note that both 
knowledge links are sorted however based on their own 
symbol encoding scheme. We keep the KL1 and sort the KL2 
based on the new symbol encoding scheme. After that, we 
merge the two together. 

Although the size of the knowledge base can easily go up to 
several Gigabytes, during the merging, only 2 knowledge 
links are maintained in the memory, therefore, the memory 
complexity of the merging algorithm is well controlled. The 
computation complexity of merging two sorted lists is linear 
with respect to the size of the list. Therefore, the computation 
complexity of the algorithm is bounded by the complexity to 
sort KL2, which is ), where n is the size of KL2. Note 

we    have    now    to     decide    how ….
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that KL2 is one of the knowledge links in the new KB, which 
is obtained after reading one training file, while KL1 is one of 
the knowledge links in the main KB, which is the 
combination of multiple KBs. It is obviously more efficient to 
sort KL2 instead of KL1 because| | | |. 

D. Recall Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Sentence completion: recall. 

The recall algorithm fills in the blank spaces in an incomplete 
sentence. For those lexicons whose content is given, we first 
encode the string to its symbolic representation. The symbol 
is labeled as “active”. Then for each lexicon whose content is 
unknown, we calculate the excitation level of its symbols. The 
excitation level of a symbol i in lexicon B is defined as: 

         ∑ ∑    ,  

where  is the knowledge value from symbol j in 
lexicon A to symbol i in lexicon B. The N highest excited 
symbols in this lexicon are set to be active. These symbols 
will further excite other symbols in other unknown lexicons. 
This procedure will continue until the activated symbols in all 
lexicons do not change anymore. If the convergence cannot 
be reached after a given number of iterations, then we will 
force the procedure to converge. After that, we will reduce the 
value of N and repeat the above procedure. The entire recall 
procedure will stop when N is reduced to zero. 

Experimental results show that increasing the value of N 
helps to give more meaningful sentence completion results; 
however, it also increases the runtime exponentially. 

IV. EXPERIMENTAL RESULTS 

In this section, we provide experimental results for the 
performance of the training algorithm and the quality of the 
recall algorithm.  

A. Performance of the training function 

  

 

 

 

 

 

 

Figure 9. Size of the training corpus. 

   

 

 

 

 

 

 

 

Figure 10. Performance of level 1 hash function. 

 

 

 

 

 

 

 

 

Figure 11. Performance of level 2 hash function for KL 
#400. 

Our training corpus consists of 73 classic literatures, 
including the works from Aesop, Louisa May Alcott, James 
Matthew Barrie, and the Bronte sisters, et al. Each book is 
used as a separate training file. To avoid extremely long 
sentences, we assume that all punctuations except ‘`’ and ‘-’ 
indicate an end of a sentence. Figure 9 shows the number of 
words and the number of distinguished words/word pairs in 
the training corpus. As we can see, the variance in the number 
of distinguished words/word pairs is much smaller than the 
variance of the sizes of the training files.  

In the first setup, incremental training is used in the 
experiment. Each time after a book is trained; the new 
knowledge base will be merged to the main knowledge base. 
Figure 10 shows the performance of the first level hash 
function by comparing its complexity to the complexity of 
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binary search. In average, to find the symbol encoding of a 
string, the average number of read access is 1.02 and 14.9 
using the hash table and the binary search respectively. 
Therefore, using the hash technique provides almost 15X 
speed up in performance. 

Figure 11 shows the similar results for the 2nd level hash 
function. There are 38 39 1482  hash tables in the 
second level. Here we only report the result for the one which 
corresponds to the knowledge link #400. As we can see from 
the figure, the average number of read access to locate a 
knowledge entry in the knowledge link matrix is 1.3 using 
hash table, and it is 12.8 using binary search. 

Figure 12 shows the distribution of the number of collisions 
of the hash table for knowledge link #400. The training file 
for this data is L. M. Alcott’s “Little Woman”. The largest 
collision is 4, which happens to only 1 entry in the knowledge 
link matrix while the vast majority of the entries have no 
collision. 

 

 

 

 

 

 

Figure 12. The distribution of the number of collisions in 
the second level hash table for KL #400. (training file: 

“Little Woman” by L. M. Alcott) 

 

 

 

 

 

 

 

Figure 13. Performance of training. 

Figure 13 shows the performance of our incremental learning 
algorithm. In the figure, we report the overall accumulated 
learning time, as well as the accumulated reading time and the 
accumulated merging time. As we can see, the times to merge 
the two knowledge bases dominate the computation cost of 
the incremental learning. We also concatenated all the 
training files and training them together. The result is 
reported as “One shot training time” in the figure. As we can 
see, the training time of the concatenated files is almost the 
same as the accumulated training time when these files are 
trained separately. This is because, due to the help of the hash 
function, the time to locate a knowledge entry remains almost 
constant even though the size of the knowledge base 

increases. However, because the “one shot” training has to 
maintain the entire KB in the memory, it soon exceeds the 
memory limit, which is set to be 500,000 entries per 
knowledge link. Therefore, it can train at most 31 books. In 
contrast, the incremental training only has to keep just one 
knowledge link in the new KB and the main KB. Therefore, 
its performance is sustainable. 

B. Quality of sentence completion outputs 

In the first setup, we use the recall function to complete some 
trained sentences. We arbitrarily selected 69 sentences from 
the training text and randomly remove words with 0.3 
probabilities. Table 1 gives the quality of the recall when the 
MAX_AMBIGUITY varies from 1 to 20. We categorize the 
result of the recall into 3 groups. A perfect recall refers to the 
cases when the exact test sentences are recalled. A correct 
recall refers to the cases when the recall function does not 
give the exact test sentence; however gives another sentence 
in the test corpus. Although the result is not exactly what we 
asked for, it is still correct. A wrong recall refers to the cases 
when a sentence not in the training text has been 
confabulated. Our results show that, when 
MAX_AMBIGUITY is greater than or equal to 5, all 
sentences are recalled correctly. Otherwise, about 3% of the 
sentences cannot be correctly recalled. 

Table 1. Recall of the trained sentences. 

MAX_AMBIGUITY Perfect 
recall 

Correct 
recall 

Wrong 
recall 

20 66 3 0 
10 66 3 0 
5 66 3 0 
2 64 3 2 
1 64 3 2 

 

In the second setup, we evaluate the algorithm with simple 
sentence completion tests extracted from a Kindergarten 
workbook. Table 2 gives the list of input sentences and 
sentences completed by our program. None of the sentences 
have been read during the training. The answers that are not 
reasonable are highlighted in bold. As we can see, 10 of the 
15 sentences are completed correctly.  

In the third setup, we use the book “Great Expectations” by 
Charles Dickens, and a children’s story book “Why the Sea is 
Salt” as our test files. Neither of the books has been read 
during the training procedure. From each book we randomly 
picked 100 sentences and then randomly took out 30% of the 
words from each selected sentence. 

Some of the decimated sentences and the results produced by 
our sentence completion software are listed. The underlined 
texts in italic are completed by the software. We can see that 
the majority of the confabulated sentences read reasonably 
well with correct grammar. While a few of them are with 
minor grammar errors or do not really make sense. 
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Table 2. Completion of simple sentences. 

 Input sentence Completed sentences 

1 I     a good idea  I had a good idea  

2 But he has a lot     work to 

do  

But he has a lot to work to 

do  

3 He gets help    his friends  He gets help to his friends  

4      are many jobs to do  You are many jobs to do  

5 They     so much work  They do so much work  

6      the boys work  And the boys work  

7 They clean      clean  They clean were clean  

8 That car      not clean  That car took not clean  

9 There      many houses in 

town  

There were many houses in 

town  

10 Cars      on the streets  Cars lamps on the streets  

11 He works in      store  He works in her store  

12 He lives      the house  He lives in the house  

13 A tornado      coming  A tornado is coming  

14 The boy didn’t want the 

tornado      come  

The boy didn’t want the 

tornado to come  

15 No     was happy about this No I was happy about this 

 

Input:     ____  the poor  ____ wife. 
Output: Said  the  poor  invalid  wife. 
 
Input:     ____  gone with  ____   ____. 
Output: And  gone  with the  clouds.  
 
Input:    Ladies  ____   ____. 
Output: Ladies   and   gentlemen.  
 
Input:    At which crisis I partially  ___  the use of my  ____. 
Output: At which crisis I partially  recovered  the use of my senses. 
 
Input:    As its on  ____  ____ service. 
Output: As its on  the  morning  service. 
 
Input:   ____ these things ____  ____  without then knowing that 
____  ____  ____. 
Output: And these things had  been without then knowing that  they  
became  realities. 
 
Input:   ____ Joe ____ to hammer and clink. 
Output: And  Joe  have  to hammer and clink. 
 
Input:   ___ drew a pitcher of beer ___ the ___. 
Output: And  drew a pitcher of beer  in  the  wall. 
 
Input:   ___ the ___ man ___ determined to deliver the cows ___  
___ Hiysi. 
Output: At  the  last  man  he  determined to deliver the cows back  
to  Hiysi. 
 
Input:    To make  ____  ____. 
Output: To make matters  straight. 

Input:    Where are we ___ to get something to ___. 
Output: Where are we going to get something to me. 
 
Input:    ___ will we celebrate. 
Output: When will we celebrate. 
 
Input:    He did ___ know what ___ do. 
Output: He did not know what to do. 
 
Input:    Why ___  ___ come ___? 
Output: Why are  you come here? 
 
Input:    Looking ___  ___ rich man. 
Output: Looking at  the  rich man. 
 
Input:    ___  ___  take it to Hiysi. 
Output: Will  you take it to Hiysi. 
 
Input:    ___  ___  ___ lived deep in the ___ 
Output: And  I  have  lived deep in the way. 
 
Input:   ___ caused ___ Joe reentering the ___ empty handed. 
Output: That caused Ned Joe reentering the brook empty handed. 
 
Input:   And then ___ stood ___. 
Output: And then she stood still. 
 
Input:   Opening ___ door ___spit stiffly ___  ___  high stocks. 
Output: Opening the door and spit stiffly enter  before high stocks. 
 
Input:   I ___  ___ little ___ of my scattered ___. 
Output: I went  a  little out of my scattered to. 
 
Input:   ___ am ___ a ___ in ___ name ___ the ___. 
Output: I am going a tell in the name of the father. 
 
Input:   And pray ___  ___ you ___  ___  ___. 
Output: And pray circulate them you three influential quarters. 

 

In the last setup, we test the system using the Rotter 
incomplete sentence test [11]. The Rotter test is usually used 
to find out the personality and the psychological state of the 
subject. About 24 incomplete sentences are fed into the 
system; all of them are completed with meaningful output. 11 
out of the 24 output sentences are exactly the same as 
sentences in the training file. The following is a list of these 
11 sentences. 

 I feel deeply  interested  in  her. 

 I regret that  they  did  not  visit  us  before  sailing. 

 I am afraid of what  may  happen  if  I. 

 My father is willing  to  give  you  a  last  chance. 

 The future wellbeing  of their  child. 

 My nerves are torn  to  pieces. 

 Girls were made  to  take  care  of  boys. 

 School would  be  a  complete  change. 

 I need not  narrate  in  detail  the  further  struggles  I  had. 

 I hate anybody  to  come  upon  me  so  unexpectedly. 

 I wish these  papers  did  not  come  in  the  house. 



The other 13 sentences are made up (or “confabulated”) by 
the program. They are listed in the next. 

 Other people are  like   those   stupid   hoppers.  

 I am best when  to   be   able   to   do   it.  

 What bothers me is going  to  say  next  before  he  says  it.  

 The happiest time is coming  when  it  will  take  the  place.  

 I dislike to  dwell   on   the   result.  

 I failed to  see  what  I  did.  

 A home is  at   the   end   of   the   gallery   opened.  

 Boys can be  of   the   greatest   assistance   to   me.  

 My mother always  on leaving the letter unanswered.  

 I suffer  matters   to   take   their   course.  

 Other kids  were  couched  in  language  which  made  

Michel  jump.  

 My greatest worry is to love her for her tender sympathy.  

 What pains me is to  be  in  the  house. 

V. CONCLUSIONS AND FUTURE WORKS 

We have introduced the modeling, training and recall 
techniques of our confabulation based sentence completion 
software. The hash based training algorithm supports 
extensive reading in relatively short time and at the same time 
maintains a high quality knowledge base. The software can 
recall sentences in the training files with 100% accuracy. It 
can also fill in missing words in simple sentences or provide 
meaningful sentences based on the given initial words. 
Although it gives promising results, some of the sentences 
provided by the software are not logically correct. One 
promising method to improve the results is to incorporate 
semantic information (such as parts of speech) with the 
confabulation model and algorithms.  
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